The influence of toughening-particles in CFRPs on low velocity impact damage resistance performance

نویسندگان

  • D. J. Bull
  • A. E. Scott
  • S. M. Spearing
  • I. Sinclair
چکیده

The role of particle-toughening for increasing impact damage resistance in carbon fibre reinforced polymer (CFRP) composites was investigated. Five carbon fibre reinforced systems consisting of four particle-toughened matrices and one system containing no toughening particles were subjected to low velocity impacts ranging from 25 J to 50 J to establish the impact damage resistance of each material system. Synchrotron radiation computed tomography (SRCT) enabled a novel approach for damage assessment and quantification. Toughening mechanisms were detected in the particle-toughened systems consisting of particle-resin debonding, crack-deflection and crack-bridging. Quantification of the bridging behaviour, increase in crack path length and roughness was undertaken. Out of the three toughening mechanisms measured, particle systems exhibited a larger extent of bridging suggesting a significant contribution of this toughening mechanism compared to the system with no particles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Damage Assessment in Glass Fiber-Epoxy Matrix Composite under High Velocity Impact of Ice

This study investigated the influence of nanoclay on the impact damage resistance of glass fiber-epoxy composites under high velocity ice impact loading. Addition of 0.5 wt. % nanoclay into epoxy was shown to improve damage resistance compared to composite plates having no nanoclay platelet. The glass fiber-epoxy composites containing nanoclay brought about substantial improvement in ice impact...

متن کامل

Ballistic Performance of Hybrid Armor with Ceramic Inserts and Polymeric Matrix for Different Threat Levels (TECHNICAL NOTE)

  Ceramic materials due to their high compressive strength and hardness have been one of prime candidates in armor design in particular when high level threads (impact velocity above 600m/s) are involved. The aim of this work is to investigate ballistic impact resistance potential for a target plate with novel ceramic inserts as against ceramic tiles. Two size 98% alumina (AL2O3) base ceramic i...

متن کامل

Low Velocity Impact Damage Prediction in Laminated Composite Plates

In this paper, a finite element model is presented for the transient analysis of low velocity impact, and the impact induced damage in the composite plate subjected to low velocity impact is studied. The failure criteria suggested by Choi and Chang and the Tsai-Hill failure criteria are used for the prediction of the damage in the composite plate; then the effect of various parameters on the im...

متن کامل

Finite Element Analysis of Low Velocity Impact on Carbon Fibers/Carbon Nanotubes Reinforced Polymer Composites

An effort is made to gain insight on the effect of carbon nanotubes (CNTs) on the impact response of carbon fiber reinforced composites (CFRs) under low velocity impact. Certain amount of CNTs could lead improvements in mechanical properties of composites. In the present investigation, ABAQUS/Explicit finite element code (FEM) is employed to investigate various damages modes of nano composites ...

متن کامل

The Effect of Nanoclay on Damaged Areas of Composite and Nanocomposite Laminates

The influence of nanoclay on the impact damage resistance of glass fiber–epoxy composites has been investigated using high-velocity repeated ice impact tests. The incorporation of nanoclay into epoxy enhances the impact resistance of the composites. The impact of ice is a realistic scenario for composite structures such as aircraft fuselages, wing skins and fan blades and it is not a completely...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014